显然在第n年年底:
P·(1+i)n-A·(1+i)n-1-A·(1+i)n-2-……-A·(1+i)-A=0,即:
P·(1+i)n=A·[1+(1+i)+(1+i)2+……+(1+i)n-2+(1+i)n-1]。等式右边中括号中为一个首项为1、公比为(1+i)的n项等比数列的和。所以有:
P·(1+i)n=A·[1-(1+i)n]/[1-(1+i)]即:
P·(1+i)n=A·[1-(1+i)n]/-i,那么:
P=A·(1+i)-n·[1-(1+i)n]/-i,即:P=A·[1-(1+i)-n]/i。证毕。